A quintic polynomial differential system with eleven limit cycles at the infinity

نویسندگان

  • Qi Zhang
  • Yirong Liu
چکیده

In this article, a recursion formula for computing the singular point quantities of the infinity in a class of quintic polynomial systems is given. The first eleven singular point quantities are computed with the computer algebra system Mathematica. The conditions for the infinity to be a center are derived as well. Finally, a system that allows the appearance of eleven limit cycles in a small enough neighborhood of the infinity is constructed. c © 2007 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ten Limit Cycles in a Quintic Lyapunov System

In this paper, center conditions and bifurcation of limit cycles at the nilpotent critical point in a class of quintic polynomial differential system are investigated. With the help of computer algebra system MATHEMATICA, the first 10 quasi Lyapunov constants are deduced. As a result, sufficient and necessary conditions in order to have a center are obtained. The fact that there exist 10 small ...

متن کامل

Bifurcation of limit cycles from a quadratic reversible center with the unbounded elliptic separatrix

The paper is concerned with the bifurcation of limit cycles in general quadratic perturbations of a quadratic reversible and non-Hamiltonian system, whose period annulus is bounded by an elliptic separatrix related to a singularity at infinity in the poincar'{e} disk. Attention goes to the number of limit cycles produced by the period annulus under perturbations. By using the appropriate Picard...

متن کامل

Relationships between Darboux Integrability and Limit Cycles for a Class of Able Equations

We consider the class of polynomial differential equation x&= , 2(,)(,)(,)nnmnmPxyPxyPxy++++2(,)(,)(,)nnmnmyQxyQxyQxy++&=++. For where and are homogeneous polynomials of degree i. Inside this class of polynomial differential equation we consider a subclass of Darboux integrable systems. Moreover, under additional conditions we proved such Darboux integrable systems can have at most 1 limit cycle.

متن کامل

Bifurcation of limit cycles in a quintic Hamiltonian system under a sixth-order perturbation

This paper intends to explore the bifurcation of limit cycles for planar polynomial systems with even number of degrees. To obtain the maximum number of limit cycles, a sixth-order polynomial perturbation is added to a quintic Hamiltonian system, and both local and global bifurcations are considered. By employing the detection function method for global bifurcations of limit cycles and the norm...

متن کامل

Bifurcation of limit cycles at degenerate singular point and in“nity in a septic system

In this paper, the problem of bifurcation of limit cycles from degenerate singular point and infinity in a class of septic polynomial differential systems is investigated. Using the computer algebra system Mathematica, the limit cycle configurations of {(8), 3} and {(3), 6} are obtained under synchronous perturbation at degenerate singular point and infinity. To our knowledge, up to now, this i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computers & Mathematics with Applications

دوره 53  شماره 

صفحات  -

تاریخ انتشار 2007